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a b s t r a c t

We propose a face detection method based on skin color likelihood via a boosting algorithm which
emphasizes skin color information while deemphasizing non-skin color information. A stochastic model
is adapted to compute the similarity between a color region and the skin color. Both Haar-like features
and Local Binary Pattern (LBP) features are utilized to build a cascaded classifier. The boosted classifier is
implemented based on skin color emphasis to localize the face region from a color image. Based on our
experiments, the proposed method shows good tolerance to face pose variation and complex background
with significant improvements over classical boosting-based classifiers in terms of total error rate
performance.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Human face detection is among the most important topics in
biometric research since it has a broad range of applications.
Detection of face is often performed prior to recognition and
tracking in biometric and surveillance systems. A variety of
techniques have been proposed for face detection in the literature
where they can be generally classified into the following categories
[1]: knowledge-based methods, invariant feature methods, tem-
plate matching methods and appearance-based methods.

Knowledge-based methods are rule-based methods which
encode human knowledge of what constitutes a typical face.
Usually, some rules are designed to capture the relationships among
the facial components. Invariant feature methods adopt features
such as facial components, texture, skin color and a multiple of
these features for face detection. These methods aim to find
common structural features which exist among faces under differ-
ent ambient conditions. Template matching methods store several
standard patterns of a face to describe the face either as a whole or
as separate facial components. Appearance-based methods learn a
model or a group of features from a set of training images to capture
the representative variability of facial appearance.

Most of the face detection techniques incur a large number of false
rejections due to severe face pose variation and false acceptances due

to complex background. To address these issues, we propose a face
detectionmethod based on skin color emphasis and iterative boosting
to selectively highlight the skin color information and deemphasize
background information. Unlike other boosting-based methods using
skin color, our method uses neither parametric curve fitting nor
morphological operators. Skin color is used for skin color emphasis
rather than skin color segmentation.

Our main contributions of this work include the tolerance of
proposed system to face rotation and complex background. The
boosted classifier reacts less sensitively to face pose variation as it
concentrates on probabilistic distribution of facial skin color rather
than the details of facial components in gray-level brightness. Also,
non-skin color information including background is significantly
reduced, so that skin color likelihood can be discriminatively learned.

The organization of this paper is as follows. Section 2 provides a
review on related works in face detection using skin color
information. Section 3 describes our proposed method in detail.
Section 4 presents the experimental results of our method on
several face databases. Finally, our conclusion is given in Section 5.

2. Related works

Many face detection methods based on a face model have been
proposed to cope with varying conditions including face rotation
and complex background. Wang and Yuan [2] proposed a human
face detection from color images under complex conditions
including arbitrary image background. They used an evolutionary
computation technique to cluster skin-like color pixels and seg-
ment each face-like region. After the face-like regions are located,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.patcog.2013.11.005

n Corresponding author. Tel.: þ82 2 2123 5768; fax: þ82 2 313 2879.
E-mail addresses: van@yonsei.ac.kr (Y. Ban), boxboxsk@gmail.com (S.-K. Kim),

sykim1221@yonsei.ac.kr (S. Kim), katoh@yonsei.ac.kr (K.-A. Toh),
syleee@yonsei.ac.kr (S. Lee).

Pattern Recognition 47 (2014) 1573–1585

www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2013.11.005
http://dx.doi.org/10.1016/j.patcog.2013.11.005
http://dx.doi.org/10.1016/j.patcog.2013.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.11.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.11.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2013.11.005&domain=pdf
mailto:van@yonsei.ac.kr
mailto:boxboxsk@gmail.com
mailto:sykim1221@yonsei.ac.kr
mailto:katoh@yonsei.ac.kr
mailto:syleee@yonsei.ac.kr
http://dx.doi.org/10.1016/j.patcog.2013.11.005


the wavelet decomposition is applied to each face-like region to
detect the possible facial components and to check if there is an
eye in the region. Regions in which an eye is detected or the facial
components are distributed like a predefined face model are
recognized as human faces. Yao and Gao [3] established a type
of coordinate transformation which is able to improve chromi-
nance of skin and lips. With the coordinates, they suggested a face
detection method based on skin chrominance and lip chrominance
transformations to deal with the varying pose of object and the
complex background. Hsu et al. [4] presented a face detection
algorithm for color images in the presence of varying lighting
conditions and complex background. The algorithm is based on
their novel lighting compensation technique and a nonlinear
transform to the YCbCr color space. They first detected skin
regions to generate face candidates that are then verified accord-
ing to eye, mouth and boundary maps. Aldasouqi and Hassan [5]
proposed a fast algorithm for detecting faces using morphology-
based techniques in HSV color space. Sanjay Kr. Singh et al. [6]
have combined RGB, YCbCr and HSI color spaces to get a new skin
color based face detection algorithm. As presented above, model-
based face detection methods commonly use transformation of
color space and are based on single or multiple ranges of threshold
and morphological operations in order to segment skin regions [7].
The advantage of explicitly defining the boundary of skin cluster is
the simple skin detection rules which allow very rapid classifica-
tion. However, to achieve a high recognition accuracy using this
method, we need to find a specifically adequate threshold levels
and appropriate decision rules in an empirical way [8].

Many face detection methods based on boosting algorithm
have been also suggested. Viola and Jones [9] proposed the
boosting-based face detection from learning a sequence of Haar-
like features. The differences in average intensities between two

rectangular regions are encoded by Haar-like features. The cascade
structure of classifiers is built using boosting algorithm which
chooses distinctive features [9]. Lienhart et al. [10] extended the
work of Viola and Jones using an extended set of Haar features for
different views of faces. Despite of the usefulness of Haar-like
features, the complete set of the features has to include a mass of
redundant information, and the use of pixel brightness shows
limitation against varying conditions such as face rotation and
complex background. Zhang et al. [11] used AdaBoost learning to
select a set of local regions and their weights with respect to Local
Binary Pattern (LBP) features for face detection. Many face detec-
tion techniques have difficulty in finding face under conditions of
large variation in face pose and complex background, and so does
AdaBoost using LBP features. Yan-Wen Wu et al. [12] used
AdaBoost algorithm combined with skin color segmentation, and
the segmentation is obtained by single Gaussian model fitting and
morphological operations on binary image. Furthermore, Gaussian
mixture models have been suggested for modeling the skin color
distribution [13]. Kai-Biao Ge et al. [14] suggested an AdaBoost
algorithm combined with skin segmentation and LBP based face
description. Although parametric curve fitting such as Gaussian
fitting or elliptical fitting enables incomplete training data to be
generalized and interpolated, the result highly depends on the
shape of the curve [8]. Additionally, either general facial shape
information or specific facial component information can be lost
via skin color segmentation.

In this paper, we propose a boosting-based face detection
method using skin color information without any parametric
fitting or morphological operation. Skin color information is used
not for skin color segmentation but for skin color emphasis.
A cascaded classifier based on AdaBoost is combined with skin
color emphasis, resulted in achieving improved face detection

Fig. 1. Examples of skin and non-skin color distributions on (a) YCbCr space and (b) CbCr space.
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performance against complex background and face rotation. Ada-
Boost is adopted here since it is based on a cascaded structure of
sequential classifiers which can effectively identify the non-skin
color information such as complex background. The first cascade
stage pays less attention to non-skin color, and so do the later
successive stages. On the other hand, the skin color is effectively
emphasized through these cascaded stages. Once trained, the face
can be efficiently detected with fast computational speed.

3. Proposed method

3.1. Skin likelihood

The YCbCr space can be easily obtained from the RGB space by
a simple matrix operation. Eq. (1) shows the actual conversion
from RGB to YCbCr according to [15]

Y
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The YCbCr space is perceptually uniform, and it separates
luminance and chrominance presenting compactness of the skin
distribution cluster [4] as shown in Fig. 1a. Human skin forms a
relatively tight cluster in color space even when different races are
considered [16,17], hence learning the probability of skin color
through the chromaticity information of YCbCr space could be
helpful. Based on the probability of skin color, we can emphasize
the color that belongs to the skin, while ignoring the color that
does not. To build a two dimensional histogram of skin colors,
hskinðCb;CrÞ, a large set of pixels containing skin colors is used
as shown in Fig. 1b. All the pixels within an image can be used
to define a second histogram of the entire colors, htotalðCb;CrÞ.
The probability that a given color belongs to the skin is obtained

by applying Bayes rule to each pixel of an image using the two
histograms [18].

We use the following terms to apply the Bayes rule:

hskinðCb;CrÞ: Histogram of skin colors in an image
htotalðCb;CrÞ: Histogram of entire colors in an image
Nskin: Sum over Cb and Cr of hskinðCb;CrÞ
Ntotal: Sum over Cb and Cr of htotalðCb;CrÞ

The probability of skin color given a ðCb;CrÞ color vector can be
approximated as the ratio between normalized histograms of skin
color and non-skin color which are based on manually labeled
ground truths of skin pixels (see Fig. 2).

The probability of a skin-like pixel is approximated by the
fraction of observed skin-like pixels as follows:

pðskinÞffiNskin=Ntotal ð2Þ
By using Bayes rule, the probability of skin given a ðCb;CrÞ color

vector is described as

pðskinjCb;CrÞ ¼ pðCb;CrjskinÞ � pðskinÞ
pðCb;CrÞ ð3Þ

Eq. (3) gives a lookup table that directly converts a ðCb;CrÞ pixel
value into probability of whether it belongs to skin color. Through-
out the creation of the lookup table, the two histograms can be
quantized into adequate levels. In the lookup table, we place
default values of 0 for all pixels for which htotalðCb;CrÞ is zero.
Finally, the skin likelihood for each pixel Cbði; jÞ;Crði; jÞð Þ at position
ði; jÞ can be approximated by

Pskinði; jÞ ¼ pðskinjCbði; jÞ;Crði; jÞÞ ð4Þ
We have found the adequate number of quantization levels of

histogram, ln, by minimizing the following objective function
which is the summation of false acceptance rate and false rejection
rate in accordance with 2k number of bins of the two histograms,

Fig. 2. (a) A face example on containing skin color and (b) its histograms of Cb and Cr spaces of skin region and non-skin region.
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hskinðCb;CrÞ and htotalðCb;CrÞ.

ln ¼ arg min
lA2k

1
m� ∑

m�

j ¼ 1
δFN;TðlÞðxjÞþ

1
mþ ∑

mþ

i ¼ 1
δFP;TðlÞðxiÞ

( )
ð5Þ

where k is a positive integer, m� and mþ respectively denote the
number of negative and positive examples, δFN;TðlÞðxjÞ and δFP;TðlÞðxiÞ
using ln number of bins of histogram correspond to ‘1’ whenever
the test data xj and xi are false negative and false positive
respectively.

A number of authors have adopted Gaussian models where
further image processing methods such as morphological opera-
tions are utilized to find the facial features [12,13]. Our method
captures multiple types of complexion similar to Gaussian models
where multiple types of complexion are considered during skin
color modeling. For example, CMU PIE and Pointing’04 contain
faces ranging from dark skin tone to light skin tone (see Section
4.1). Using the two histograms, hskinðCb;CrÞ and htotalðCb;CrÞ, we
can prevent loss of information resulted from over-generalization
and distortion from interpolation caused by Single Gaussian Model
(SGM) [12] or Gaussian Mixture Models (GMM) [13]. In contrast to
Gaussian models which used only skin color distribution for
modeling, both skin color histogram and non-skin color histogram
are used to create a discrete and simple Bayesian lookup table
based on the probability of skin color and non-skin color. This
leads to faster computation compared to continuous curve fitting
methods based on parametric formulations such as Gaussian
models (see Table 7).

The formulation for learning and utilizing the Bayesian lookup
table are described in Eqs. (6) and (7) respectively. In Eq. (6), f 1ðU Þ
accumulates the histograms of skin regions and builds the lookup
table.

T ¼ f 1ðI;BÞ; I¼ ð i1 i2 ::: iN Þ; B¼ ðb1 b2 ::: bN Þ ð6Þ

where T is the lookup table, I is the image sequence containing the
two channels of Cb and Cr, and B is the binary mask of skin regions.

In Eq. (7), f 2ðUÞ calculates the probability of skin based on the
lookup table. Applying this equation to each pixel, we finally
obtain a skin likelihood image.

y½p�n ¼ f 2ðx½p�
n ; TÞ; 0ry½p�n r1; x½p�

n ¼
xn;Cb ½p�

xn;Cr ½p�

 !
8n¼ 1;2; :::;N 8p¼ 1;2; :::; P ð7Þ

where y½p�n is the probability of skin of pth pixel of the nth image,
x½p�
n is the vector component of pth pixel of the nth image including

the two channels of Cb and Cr, T is the lookup table, N is the
number of images, and P is the number of pixels within an image.

3.2. Skin boosted classifier

The training scheme of skin boosted classifier is described in
Table 1. Skin color information is accentuated so that it can be
distinctively learned by skin boosted cascade training via the proce-
dure shown in Fig. 3. The procedure is to learn not only the
characteristic of facial structure but also the characteristic of skin color
distribution of face. Background information can be also effectively
minimized from the beginning of the first cascade stage of the iterative
boosting [19]. Therefore our skin boosted classifier learning aims both
to select complementary weak classifiers and simultaneously to
determine the associated weights that skin color information is
emphasized while non-skin color information is reduced [9,20].

In Table 1, a set of training examples as ðx1; y1Þ; :::; ðxN ; yNÞ is
given for training, and yiAfþ1; �1g is the class label of xiARn.
Hskinðx′Þ is skin strong classifier, hm is weak classifier, αm is weight,
and M is the total number of combinational features.

Haar-like features provide a way for detailed analysis of edge
and texture of skin. The rectangular Haar-like feature is calculated

as the difference of the sums of skin likelihood within white
rectangles and black rectangles. Each feature type can express
existence or absence of characteristics of the distribution of skin
likelihood in the probabilistic image (see Fig. 4). LBP feature is
extracted by binarising the gradients of center point to its
8 neighboring points pixel-wise [21] (see Fig. 5a). Subsequently,
the histogram of the binary pattern is used as a skin likelihood
descriptor. As such, LBP eventually describes the distribution of
facial skin which can be seen as a composition of micropatterns
such as spot, flat, line end, edge and corner [22]. The face region is
scanned by local patches, and the texture feature is extracted from
each patch independently with respect to the regional histogram.
The features are then concatenated to form a global description of
the face having highlighted skin color. The skin texture description
of a single patch describes the appearance of the patch and the
combination of descriptions of all patches represents the global
geometry of the face with highlighted skin in the probabilistic
image (see Fig. 5b). The combinations of our method with the
rectangular summation of Haar-like features and the histogram
computation of LBP are compared in terms of detection accuracy
performance and computational time.

Fig. 3. Systematic flow.

Table 1
Training scheme of skin boosted classifier.

1. Apply Bayesian lookup table x′½p�n ¼ f 2ðx½p�
n ; TÞ 8n¼ 1;2; :::;N 8p¼ 1;2; :::; P

2. Start with initial weight wi ¼ 1=N; i¼ 1;2; :::;N; Hskinðx′Þ ¼ 0
3. Repeat for m¼ 1;2; :::;M

(a) Fit the regression function by weighted least squares fitting of Y to X′.
(b) Update Hskinðx′Þ’Hskinðx′Þþαmhmðx′Þ
(c) Update wi’wie�yiamhm ðx′i Þ and normalization

4. Output the skin strong classifier

Hskinðx′Þ ¼ 1 when ∑M
m ¼ 1αmhmðx′ÞZ

1
2
∑M

m ¼ 1αm

0 otherwise

8<
:
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Aweak classifier is designed to select the single rectangular feature
or the single LBP histogram bin that best separates positive and
negative examples [9]. The description of the weak classifier tends to
rather concentrate on skin region than to average over all image areas
including complex background region. The skin strong classifier, which
is a linear combination of weighted weak classifiers selected through
the training scheme, eventually focuses on the characteristic of
probabilistic distribution of skin color. On the contrary, probabilistic
distribution of non-skin color is taken into less consideration.

4. Experiment

4.1. Experimental setup

To evaluate our proposed method, we used color face images
under complex background and largely varying pose of face in

yaw, roll and pitch directions. In addition, varying lighting condi-
tion, different races, facial expression and slight changes in
appearance such as moustache or glasses are also basically
considered. We used 393 images of Pointing’04 database [23]
(Fig. 6) and 1200 images of IMM database [24] (Fig. 7) to test our
method against face pose variation in the presence of varying
lighting condition. Then, 250 images of Caltech database [25] is
used to test the condition of complex background (Fig. 8), while
1020 images of CMU PIE database [26] is used for the test under
the combination of complex background and face rotation (Fig. 9)
in the presence of different races condition. Bao database [27]
includes the combination of multiple faces, complex background,
pose variation, different races, facial expression, appearance
change such as glasses, moustache and varying lighting conditions
over the 221 images of different sizes (Fig. 10). Finally, FDDB [28]
includes 2845 images containing a wide range of difficulties
(Fig. 11). FDDB database additionally considers face occlusion,
out-of-focused face, motion blur and severely varying lighting
conditions compared to Bao database (Table 2).

Our skin boosted classifier is trained using positive samples and
negative samples with a ratio of 1 positive sample to 4 negative
samples. AdaBoost is applied for cascading strong classifiers, and
Haar-like features and LBP features are used to build weak
classifiers. Including Viola et al. [19], many classical algorithms
started at the base scale of 24�24 pixels in which faces are
detected, so the smallest size of the scanning window is set to
24�24. Viola et al. [19] uses a rescaling factor of 1.25 while
Lienhart et al. [10] uses a rescaling factor of 1.2. We set the
rescaling factor to 1.2 because window-scanning using a rescaling
factor of 1.2 can be more elaborate than that of using a rescaling

Fig. 4. (a) Haar-like representation and (b) Haar-like feature extraction of skin color
likelihood.

Fig. 5. (a) LBP representation and (b) LBP feature extraction of skin color likelihood.

Fig. 6. Pointing’04 database.
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factor of 1.25. Every error rate is achieved by computing the
average of 10 fold cross-validation results for better reliability.

4.2. Performance measure

First, to deal with how good a face detection result is, we
applied the overlap measure A [29] as given by

A¼ jAg \ Acjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAgj � jAcj

p ð8Þ

where Ag and Ac are the ground truth bounding box and the
computed bounding box respectively, and their magnitudes, jAgj
and jAcj, are defined as area of the bounding box in number of
pixels.

The measure A represents the ratio of the overlapping area
between Ag and Ac to the geometric mean of Ag and Ac . When Ag

and Ac completely overlap, A equals 1. To implement this quality

measure, the ground truth is extracted manually by the rule
depicted in Fig. 12. Requisitely, we measure the margin between
nose and mouth, dnm, and the margin of mouth width from the left
tip to the right tip, dmw . These margins are scaled by αto produce
four boundaries. The upper boundary is located above the margin,
dnmα, from the eyes, the lower boundary is located below the
margin, dnmα, from mouth, the left boundary is located left the
margin, dmwα, from eye 1, and the right boundary is located right
the margin, dmwα, from eye 2.

Second, for quantitative evaluation of face localization result, a
confusion matrix is constructed as shown in Fig. 13. If the positive
prediction area overlaps the ground truth area by more than a
threshold of 95%, it is considered as True Positive (TP), otherwise it
is considered as False Positive (FP). Also we take negative testing
image with no positive prediction as True Negative (TN) and
positive testing image with no positive prediction as False Nega-
tive (FN) as presented in Eq. (9). False Acceptance Rate (FAR) is the

Fig. 7. IMM database.

Fig. 8. Caltech database.

Fig. 9. CMU PIE database.

Fig. 10. Bao database.

Fig. 11. FDDB database.
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rate that a negative example is falsely detected or the positive
example does not overlap the ground truth area by more than the
threshold value. False Rejection Rate (FRR) is the rate that a
positive example is falsely rejected. According to [30], these rates
are written as

FAR¼ 1
m� ∑

m�

j ¼ 1
δFNðxjÞ; FRR¼ 1

mþ ∑
mþ

i ¼ 1
δFPðxiÞ ð9Þ

where m� and mþ denote the numbers of negative and positive
examples respectively, δFNðxjÞ corresponds to a ‘1’ whenever the
test data xj is FN, and δFPðxiÞ corresponds to a ‘1’ whenever the test
data xi is FP. With the FAR and FRR in place, the Half Total Error
Rate (HTER) [31] can be written as

HTER¼ FARþFRR
2

¼ 1
2m� ∑

m�

j ¼ 1
δFNðxjÞþ

1
2mþ ∑

mþ

i ¼ 1
δFPðxiÞ ð10Þ

4.3. Results

The experimental results are shown in Fig. 14–19. Our proposed
method improves the boosting-based conventional methods [9–
14] under face pose variation and complex background conditions
in respect to half total error rate. We also compare the time
complexity of each method by measuring the computational time
and the number of training cascade stages. Two main advantages
could be achieved using our suggested method. First, the classifier
reacts less sensitively to variation in face pose, because it tends to
focus on structural distribution of skin color of the presented face
rather than the details of facial components in gray-level bright-
ness. Second, small likelihood value is assigned to background
region producing tolerance against complex background. Accord-
ing to these advantages, we could efficaciously detect a face in the
presence of complex background and face pose variation in yaw,
roll and pitch directions. Compared to conventional methods, our
proposed method noticeably reduces false rejection rates against
face pose variation and reduces false acceptance rates against
complex background as presented in Tables 3 and 4 respectively.

4.3.1. Face pose variation
Conventional face detection method using Haar-like features

calculates the summations of gray-level brightness in rectangular
areas, whereas our suggested method computes the summations
of likelihood that a given color belongs to the skin in the areas.
Similarly, LBP features of our proposed method label the pixels by
using not the gray-level intensities but the skin likelihood of their
neighborhood. The rectangular summation of Haar-like feature has
been reported to tolerate face rotation beyond a certain range [19].
As presented in Table 3, our proposed method further improves
the tolerance against varying face pose.

Pointing’04 test dataset contains various face pose conditions, and
our method shows considerably improved performance against
severe changes in face pose regarding all the directions of yaw, roll
and pitch. Skin color likelihood could be well combined with both
the rectangular summation of Haar-like features and the histogram
computation of LBP features. The highlighted skin color helps the
skin boosted classifier to concentrate on the structural distribution of
skin color of face rather than the details of facial components in gray-
level brightness. As a result, our proposed method reduces false
rejections against severe face pose variation also on other test
datasets including IMM, CMU PIE as shown in Table 4.

4.3.2. Complex background
Caltech test dataset includes face in the presence of complex

background. Our proposed method substantially reduces the false
acceptance rate by focusing on the frequencies of skin color
likelihood as shown in Table 3. Skin boosted classifier effectively
extracts distinctive features by taking background information into
less consideration. CMU PIE test dataset concurrently contains
complex background and face rotation conditions. The overall
results on CMU PIE test dataset show the effectiveness of our
proposed method not only against complex background but also
against the combination of complex background and face rotation.
Bao test dataset mainly contains multiple faces with a combination
of complex background, pose variation, different races and varying
lighting conditions. Based on the experimental results, our method
effectively deemphasizes complex background even when the
proportion of background region increases and multiple faces are
presented. FDDB test dataset includes complex background with
an extensive combination of various conditions in the wild addi-
tionally considering face occlusion, severely varying lighting,
motion blur and out-of-focused face conditions additionally com-
pared to the Bao test dataset. Based on skin color emphasis, our

Fig. 12. Margins for ground truth.

Fig. 13. Confusion matrix.

Table 2
Composition of database.

Dataset Condition Number of images

Caltech Complex background 250

Pointing’04 Face rotation 393

CMU PIE Complex background 136
Small variation in face rotation,
complex background

476

Large variation in face rotation,
complex background

408

IMM Face rotation 1200

Bao
Multiple faces, complex background,
face rotation

221

FDDB
Combination of various conditions
in the wild

2843
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Fig. 14. Detection results of Pointing’04 dataset.

Fig. 15. Detection results of IMM dataset.
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method effectively finds faces in the examples which contain
complex background, pose variation and multiple faces. However,
methods using skin color are prone to face occlusion problem
because occlusion basically makes it difficult to handle skin color.

Face detection performance degrades as the structural distribution
of skin color of a face varies widely when it is occluded. Overall, we
observe that our method performs well under complex background
in the presence of face pose variation and multiple faces conditions,

Fig. 16. Detection results of Caltech dataset.

Fig. 17. Detection results of CMU PIE dataset.
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whereas it does not performwell when face occlusion is considered
and when skin colors vary too broadly which can be dependent to
the color of surrounding environment or severe lighting condition
(Table 5).

4.3.3. Time complexity
Training procedure for boosting becomes lighter due to reduced

information of non-skin color as background. Skin strong classifier of
the first cascade stage pays less attention to information of non-skin

Fig. 18. Detection results of Bao dataset.

Fig. 19. Detection results of FDDB dataset.
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color, and so do the later successive stages. As a result of focusing
particularly on information of skin color, we could maintain a small
number of training cascade stages as shown in Table 6. Moreover, we
compare the computational times of skin color modeling and
transformation based on the results using SGM, GMM and histogram.
Although histogram is quite time consuming for building the lookup
table in the training phase, it shows much faster computation in the
testing phase compared to SGM and GMM due to simple table
lookup (see Table 7). We also measure the processing time to test a
single image. Instead of the advantages to face pose variation and
complex background, additional use of skin color information needs
additional processing time. However, our method efficiently retains
certain processing speed both by using simple Bayesian table lookup
and by placing less emphasis on non-skin color region while
improving the detection performance against face pose variation
and complex background (Table 8).

5. Conclusion

We proposed a boosting-based face detection method based on
the likelihood of skin color in this paper. Our method emphasizes
skin color information while simultaneously deemphasizes non-skin
color information. Skin color emphasis could be well combined with
iterative boosting algorithm. The proposed method shows improve-
ment over those conventional methods of [9–14] against severely
varying face pose and complex background. Our proposed method
substantially reduces the half total error rate and maintains both a
small number of training cascade stages and certain processing
speed. Two important aspects have been observed. Firstly, skin color
is effectively highlighted so that the skin boosted classifier concen-
trates on structural distribution of skin color of face rather than the
details of facial components in gray-level brightness. This provides
tolerance against the face pose variation in yaw, roll and pitch

Table 3
False acceptance rate.

Dataset Viola et al. Lienhart et al. Zhang et al. Yan-Wen et al. Green Span et al. Kai-Biao et al.
Proposed method
w/Haar

Proposed method
w/LBP

Mean Pointing’04 0.4182 0.4206 0.3624 0.4573 0.4380 0.4535 0.3985 0.4017
IMM 0.4370 0.4028 0.4071 0.4590 0.4308 0.4691 0.4239 0.4473
Caltech 0.5758 0.4119 0.3655 0.3813 0.3256 0.3529 0.2172 0.2172
CMU PIE 0.5560 0.4024 0.4004 0.6932 0.3933 0.4128 0.3129 0.3070
Bao 0.5102 0.5369 0.4889 0.4099 0.3788 0.3937 0.3213 0.3029
FDDB 0.5334 0.5474 0.5045 0.5593 0.5042 0.5676 0.5319 0.5276

Standard deviation Pointing’04 0.0051 0.0061 0.0051 0.0018 0.0019 0.0053 0.0018 0.0020
IMM 0.0022 0.0018 0.0052 0.0011 0.0012 0.0810 0.0095 0.0088
Caltech 0.0124 0.0141 0.0134 0.0108 0.0105 0.0074 0.0005 0.0019
CMU PIE 0.0052 0.0030 0.0065 0.0057 0.0059 0.0019 0.0007 0.0029
Bao 0.0293 0.0198 0.0282 0.0114 0.0189 0.0181 0.0022 0.0317
FDDB 0.0448 0.0436 0.0462 0.0254 0.0419 0.0326 0.0033 0.0927

Table 4
False rejection rate.

Dataset Viola et al. Lienhart et al. Zhang et al. Yan-Wen et al. Green Span et al. Kai-Biao et al.
Proposed method
w/Haar

Proposed method
w/LBP

Mean Pointing’04 0.4139 0.3455 0.3400 0.2551 0.2290 0.2826 0.1805 0.1951
IMM 0.6525 0.5637 0.5485 0.3267 0.3465 0.4328 0.2764 0.2911
Caltech 0.3769 0.3663 0.3884 0.4042 0.3781 0.3895 0.3569 0.3326
CMU PIE 0.4843 0.4488 0.5496 0.4203 0.4230 0.6089 0.4238 0.4412
Bao 0.3975 0.3859 0.4311 0.4136 0.3562 0.3996 0.3519 0.3525
FDDB 0.5539 0.5131 0.5748 0.7865 0.7248 0.7753 0.7513 0.7669

Standard deviation Pointing’04 0.0467 0.0829 0.1082 0.1381 0.1315 0.0787 0.0370 0.0368
IMM 0.1051 0.1230 0.1748 0.1813 0.2116 0.2159 0.1522 0.1643
Caltech 0.0361 0.0552 0.0221 0.0186 0.0201 0.0590 0.0106 0.0181
CMU PIE 0.0852 0.1524 0.1388 0.0450 0.0474 0.0953 0.0058 0.0678
Bao 0.0488 0.0859 0.0247 0.0280 0.0276 0.0602 0.1562 0.0195
FDDB 0.0815 0.146 0.0614 0.0434 0.0416 0.116 0.2485 0.0322

Table 5
Half total error rate.

Dataset Viola et al. Lienhart et al. Zhang et al. Yan-Wen et al. Green Span et al. Kai-Biao et al.
Proposed method
w/Haar

Proposed method
w/LBP

Mean Pointing’04 0.4161 0.3831 0.3512 0.3562 0.3335 0.3681 0.2895 0.2984
IMM 0.5448 0.4833 0.4778 0.3929 0.3887 0.4510 0.3502 0.3692
Caltech 0.4764 0.3891 0.3770 0.3928 0.3519 0.3712 0.2871 0.2749
CMU PIE 0.5202 0.4256 0.4750 0.5568 0.4082 0.5109 0.3684 0.3741
Bao 0.4539 0.4614 0.4600 0.4118 0.3675 0.3967 0.3366 0.3277
FDDB 0.5437 0.5303 0.5397 0.6729 0.6145 0.6715 0.6416 0.6473
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directions. Secondly, non-skin information is remarkably reduced
with respect to the complex background. Skin boosted classifier
effectively extracts distinctive features by deemphasizing background
information and selectively accentuating the skin color information
at the same time. Consequently, our method captures the character-
istic of face based on the relative distribution of skin color likelihood
of face rather than segmenting out skin region, which results in less
number of falsely accepted examples against complex background.

Future work includes studying face detection using skin
color likelihood based on facial landmarks to locally deal with

face occlusion and face pose estimation problems in details.
Another topic is to find feature descriptor that provides good
representation of skin color in the presence of severe lighting
condition.
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Table 6
Number of training cascade stages.

Dataset Viola et al. Lienhart et al. Zhang et al. Yan-Wen et al. Green Span et al. Kai-Biao et al.
Proposed method
w/Haar

Proposed method
w/LBP

Mean Pointing ’04 9.1000 9.2000 9.0000 5.1000 6.0000 7.0000 5.0000 7.4000
IMM 8.2000 8.1000 8.0000 7.0000 9.0000 7.2000 6.1000 8.0000
Caltech 8.8000 8.9000 8.1000 6.8000 7.2000 7. 1000 5.6000 7.1000
CMU PIE 11.9000 12.2000 12.1000 6.2000 7.8000 8.2000 7.7000 8.3000
Bao 12.2000 12.8000 12.7000 9.0000 9.6000 9.8000 8.2000 8.9000
FDDB 12.9000 13.0000 13.1000 10.0000 10.2000 9.9000 8.2000 9.1000

Standard deviation Pointing ’04 0.3162 0.4216 0.0000 0.3162 0.0000 0.0000 0.0000 0.5164
IMM 0.4216 0.3162 0.0000 0.4714 0.0000 0.4216 0.3162 0.3162
Caltech 0.4216 0.5676 0.3162 0.4216 0.4216 0.5676 0.5164 0.3162
CMU PIE 0.5676 0.4216 0.5676 0.4216 0.4216 0.4216 0.4830 0.4830
Bao 0.4216 0.4216 0.4830 0.4714 0.5164 0.4216 0.4216 0.5676
FDDB 0.5676 0.4714 0.5676 0.4714 0.4216 0.5676 0.4216 0.3162

Table 7
Computational time per image for skin color modeling and transformation (s).

Dataset
Modeling Transformation

Training images SGM GMM Histogram SGM GMM Histogram

Mean Pointing’04 353 2.558 27.714 51.013 0.1984 0.7257 0.0951
IMM 1080 10.605 69.288 87.156 0.1723 0.7223 0.0980
Caltech 225 5.624 82.881 165.459 0.2719 1.0300 0.1372
CMU PIE 918 33.696 304.956 339.66 0.2692 0.8112 0.0981
Bao 198 4.935 76.863 155.478 0.7969 1.5235 0.1794
FDDB 2560 39.790 311.756 380.191 0.8797 1.7230 0.1991

Standard deviation Pointing’04 353 0.045 0.125 2.319 0.0046 0.0047 0.0042
IMM 1080 0.303 0.441 4.587 0.0049 0.0046 0.0051
Caltech 225 0.281 0.872 13.788 0.0130 0.0108 0.0111
CMU PIE 918 1.162 3.244 28.305 0.0091 0.0086 0.0081
Bao 198 0.330 0.926 15.678 0.0205 0.0182 0.0128
FDDB 2560 0.486 4.627 11.984 0.0302 0.0235 0.0186

Table 8
Computational time per half-sized image for testing (s).

Dataset Viola et al. Lienhart et al. Zhang et al. Yan-Wen et al. Green Span et al. Kai-Biao et al.
Proposed method
w/Haar

Proposed method
w/LBP

Mean Pointing’04 0.0057 0.0190 0.0289 0.2539 1.0503 0.0823 0.1026 0.1189
IMM 0.0151 0.0152 0.0217 0.1901 0.7427 0.0701 0.1178 0.1195
Caltech 0.0283 0.0234 0.0426 0.2189 0.3668 0.0743 0.1823 0.1896
CMU PIE 0.0201 0.0159 0.0267 0.2234 0.8749 0.0895 0.1244 0.1219
Bao 0.2108 0.2060 0.3074 0.5911 1.2151 0.1354 0.3739 0.3992
FDDB 0.2561 0.2502 0.3756 0.6828 1.3120 0.2083 0.4962 0.4883

Standard deviation Pointing’04 0.0014 0.0004 0.0003 0.0017 0.0016 0.0009 0.0019 0.0004
IMM 0.0019 0.0013 0.0010 0.0020 0.0041 0.0029 0.0034 0.0005
Caltech 0.0047 0.0010 0.0014 0.0046 0.0041 0.0056 0.0068 0.0097
CMU PIE 0.0021 0.0005 0.0006 0.0034 0.0018 0.0034 0.0061 0.0011
Bao 0.2212 0.2365 0.0714 0.1956 0.1990 0.1065 0.1448 0.1395
FDDB 0.0528 0.0576 0.0650 0.1592 0.1837 0.1728 0.1444 0.1058
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